skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nandori, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider the construction of confidence bands for survival curves under the outcome‐dependent stratified sampling. A main challenge of this design is that data are a biased dependent sample due to stratification and sampling without replacement. Most literature on regression approximates this design by Bernoulli sampling but variance is generally overestimated. Even with this approximation, the limiting distribution of the inverse probability weighted Kaplan–Meier estimator involves a general Gaussian process, and hence quantiles of its supremum is not analytically available. In this paper, we provide a rigorous asymptotic theory for the weighted Kaplan–Meier estimator accounting for dependence in the sample. We propose the novel hybrid method to both simulate and bootstrap parts of the limiting process to compute confidence bands with asymptotically correct coverage probability. Simulation study indicates that the proposed bands are appropriate for practical use. A Wilms tumor example is presented. 
    more » « less
  2. This paper is about a class of stochastic reaction networks. Of interest are the dynamics of interconversion among a finite number of substances through reactions that consume some of the substances and produce others. The models we consider are continuous-time Markov jump processes, intended as idealizations of a broad class of biological networks. Reaction rates depend linearly on “enzymes,” which are among the substances produced, and a reaction can occur only in the presence of sufficient upstream material. We present rigorous results for this class of stochastic dynamical systems, the mean-field behaviors of which are described by ordinary differential equations (ODEs). Under the assumption of exponential network growth, we identify certain ODE solutions as being potentially traceable and give conditions on network trajectories which, when rescaled, can with high probability be approximated by these ODE solutions. This leads to a complete characterization of the ω -limit sets of such network solutions (as points or random tori). Dimension reduction is noted depending on the number of enzymes. The second half of this paper is focused on depletion dynamics, i.e., dynamics subsequent to the “phase transition” that occurs when one of the substances becomes unavailable. The picture can be complex, for the depleted substance can be produced intermittently through other network reactions. Treating the model as a slow–fast system, we offer a mean-field description, a first step to understanding what we believe is one of the most natural bifurcations for reaction networks. 
    more » « less